longer than the expected $2.236 \AA$ calculated assuming $2 \cdot 50 \AA \mathrm{Na}-\mathrm{O}$ distances and ideal geometry. This longer Na - Na distance in tincalconite is believed to be due to the disordered and partially occupied nature of the $\mathrm{O} w(2)$ site. The disorder requires a greater volume of space between the sodiums, and the incomplete occupancy provides less shielding between the repulsive sodium cations.

Sodium sites $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ have nearly regular octahedral environments. $\mathrm{Na}(1)$ sits on a twofold rotation axis and is coordinated to two adjacent $\mathrm{OH}(5)$ hydroxyl groups at a distance of $2 \cdot 440$ (3) \AA, to two adjacent $\mathrm{OH}(4)$ hydroxyl groups at 2.493 (2) \AA, and to two opposite $O w(1)$ waters at 2.436 (2) $\AA . \mathrm{Na}(2)$ lies on the intersection of a threefold and three twofold axes and is coordinated to six separate tetraborate anions through $\mathrm{OH}(4)$ hydroxyl groups, 2.434 (2) \AA. The edge of the $\mathrm{Na}(1)$ octahedron formed by $\mathrm{OH}(4)$ hydroxyl groups is shared with an $\mathrm{Na}(2)$ octahedron, giving an $\mathrm{Na}(1) \cdots \mathrm{Na}(2)$ distance of $3 \cdot 663$ (1) \AA.

The tetraborate anion $\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}^{2-}$ consists of two $\mathrm{BO}_{3}(\mathrm{OH})$ tetrahedra and two $\mathrm{BO}_{2}(\mathrm{OH})$ triangles sharing corner oxygens. As with similar tetraborate anions (Levy \& Lisensky, 1978; Wan \& Ghose, 1977) the trigonal boron of tincalconite has markedly shorter B-O distances [average $1 \cdot 367$ (5) \AA] than the tetrahedral boron [average 1.476 (4) \AA]. In tincalconite as well as the other tetraborate structures mentioned the hydroxyl oxygens bonded to the trigonal borons have considerable anisotropic motion normal to the BO_{3} planes. The $\mathrm{B}(2)-\mathrm{OH}(5)$ bond distance corrected assuming a $2: 1$ riding model (Johnson, 1970) is 1.373 (5) \AA.
Hydroxyl and water hydrogens are coordinated to borate-ring oxygens through hydrogen bonds (Table 3). E.s.d.'s for the distances and angles involving the

Table 3. Hydrogen-bond contacts $\left(\AA,,^{\circ}\right)$

$\quad \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{OH}(4)-\mathrm{H}(4) \cdots \mathrm{O}\left(3^{i}\right)$	$0.79(4)$	$2.06(5)$	$2.831(4)$	$169(4)$
$\mathrm{OH}(5)-\mathrm{H}(5) \cdots \mathrm{O}\left(1^{i}\right)$	$0.86(6)$	$1.83(6)$	$2.661(4)$	$162(4)$
$\mathrm{O} n(1)-\mathrm{H} w(1 A) \cdots \mathrm{O}\left(2^{i i i}\right)$	$1.16(4)$	$1.62(5)$	$2.753(4)$	$164(4)$
$\mathrm{O} w(1)-\mathrm{H} w(1 B) \cdots \mathrm{O}\left(2^{i v}\right)$	$0.90(5)$	$1.99(5)$	$2.860(4)$	$161(4)$
$\mathrm{O} w(2)-\mathrm{H} w(2 A) \cdots \mathrm{O} n^{\prime}\left(1^{\prime}\right)$	1.18	2.09	$3.063(8)$	$137(9)$
$\mathrm{O} w(2)-\mathrm{H} w(2 B) \cdots \mathrm{OH}\left(5^{i}\right)$	1.01	2.28	$2.937(8)$	$122(9)$

Symmetry operations: (i) $\frac{5}{3}-x, \frac{4}{3}-x+y, \frac{4}{3}-z$; (ii) $1-x+y, 1-x$, z; (iii) $\frac{1}{3}-y, x-y-\frac{1}{3}, z-\frac{1}{3}$; (iv) $x-y-\frac{1}{3}, \frac{2}{3}-y, \frac{2}{3}-z$; (v) $-x, y-x,-z$; (vi) $\frac{4}{3}-x, \frac{2}{3}-x+y, \frac{2}{3}-z$.
hydrogens on $\mathrm{O} w(2)$ are not included because these hydrogens were not refined. No other close contacts in the crystal structure are observed.

We thank the National Science Foundation for support of this research through major instrumentation grants to the University of Wisconsin Chemistry Department.

References

Giacovazzo, C., Menchetti, S. \& Scordari, F. (1973). Am. Mineral. 58, 523-530.
Johnson, C. K. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 220-226. Copenhagen: Munksgaard.
Larsen, A. C. (1970). Crystallographic Computing, edited by F. R. ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Levy, H. A. \& Lisensky, G. C. (1978). Acta Cryst. B34, 35023510.

Mertes, L. (1963). Editor. Handbook of Analytical Chemistry, 1st ed. New York: McGraw-Hill.
Mellor, J. W. (1980). Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. V, Part A, pp. 368-369. New York: Longman.
Sheldrick, G. M. (1990). SHELXTL-Plus. Version 4.1. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA. Wan, $^{\text {C. N. \& Ghose, S. (1977). Am. Mineral. 62, 1135-1143. }}$

Acta Cryst. (1991). C47, 2282-2285

Redetermination of the Structure of Hexaaquaaluminium(III) Nitrate Trihydrate

By D. Lazar and B. Ribár
Institute of Physics, University of Novi Sad, 21000 Novi Sad, Dr Ilije Djuričicia 4, Yugoslavia
and B. Prelesnik
‘Boris Kidrič' Institute of Nuclear Sciences - Vinča, Laboratory of Solid State Physics and Radiation Chemistry, 11000 Belgrade, PO Box 522, Yugoslavia

(Received 8 January 1991; accepted 15 May 1991)

Abstract

Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=375 \cdot 13\), monoclinic, $P 2_{1} / c, a=13.892$ (2), $b=9.607$ (1), $c=$ $10 \cdot 907$ (2) $\AA, \quad \beta=95 \cdot 51(2)^{\circ}, \quad V=1448 \cdot 9 \AA^{3}, \quad Z=4$, $D_{x}=1.719 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $2 \cdot 3 \mathrm{~cm}^{-1}, F(000)=784, T=293 \mathrm{~K}$, final $R=0.041$ for 2137 reflections with $I>3 \sigma(I)$. The structure

Table 1. Crystal data for the Al, Cr and Fe nitrate nonahydrates

References: (i) Kannan \& Viswamitra (1965); (ii) Lazar et al. (1991); (iii) Herpin \& Sudarsanan (1965); (iv) Hair \& Beattie (1977).
differs from that previously reported [Herpin \& Sudarsanan (1965). Bull. Soc. Fr. Minéral. Cristal$\log r$. 88, 595-601]. The unit cell comprises two crystallographically distinct $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ octahedra, with crystallographic $\overline{1}$ symmetry, connected by threedimensional hydrogen bonding involving nitrate anions and water molecules.

Introduction. Groth (1906) found that the title compound is dimorphic, occurring as a monoclinic and an orthorhombic structure. To the best of our knowledge there are no other data for the orthorombic form. The monoclinic form, together with that of $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, was studied earlier by Kannan \& Viswamitra (1965) by rotation and Weissenberg photographs (see Table 1). Similarities in the unit-cell dimensions of the Al and Cr nitrate nonahydrates and the existence of mixed crystals led these authors to conclude that the compounds are isomorphous.

Herpin \& Sudarsanan (1965) carried out the crystal structure analysis of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ and found the heavy atom in a general position (0.2499 , $-0.0009,0 \cdot 2480$) in contrast to $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$ (Lazar, Ribár, Divjaković \& Mészáros, 1991), where the heavy atoms occupy two independent sets of special positions in $P 2_{1} / c:\left[(a) 0,0,0 ; 0, \frac{1}{2}, \frac{1}{2}\right.$ and (d) $\left.\frac{1}{2}, 0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0\right]$, so that the isomorphism of the Al and Cr nitrate nonahydrates was questioned. However, the extremely high R value (0.23) reported by Herpin \& Sudarsanan (1965) prompted a new structural analysis of the title compound.

Experimental. Single crystals of Merck's compound are white, transparent and highly hygroscopic. One of size $0.45 \times 0.22 \times 0.25 \mathrm{~mm}$ was sealed in a Lindemann-glass capillary for data collection. Approximate cell parameters were determined from oscillation and Weissenberg photographs. Accurate unit-cell parameters were obtained by least-squares refinement from 20 reflections measured on a diffractometer in the range $6<2 \theta<17^{\circ}$. The intensity data were collected on an Enraf-Nonius CAD-4 diffractometer using graphite-monochromated Mo $K \alpha$ radiation. 3143 reflections were collected in the $\omega / 2 \theta$ scan mode up to $2 \theta=52^{;} ; h \leq 17, k \leq 11,-13 \leq l \leq$ 13; data corrected for Lorentz and polarization
effects, but not for absorption. The intensities of two standard reflections ($6 \overline{4} \overline{2}, 3 \overline{3} 7$) diminished by 23% during five days of data collection. A correction was made (Frenz, 1983). 2472 unique reflections, 2137 with $I>3 \sigma(I)$ accepted for structure solution and refinement.

Reflections with either $(h+k)$ or $(k+l)$ or $(h+l)$ even were on average stronger than those with odd values for these combinations. The pseudo-facecentered lattice, thus implied, was possible if the Al^{3+} ions occupied two independent sets of special positions in $P 2_{1} / c$, like the Cr^{3+} ions in $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (Lazar et al., 1991).

The structure was solved assuming the isomorphism with $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ and refined by fullmatrix least squares minimizing $\sum_{H}(\Delta F)^{2}$ with SHELX76 (Sheldrick, 1976), $\quad w^{\prime}=1 \cdot 4843 /\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.0.000712 F_{o}^{2}\right]$. Positional atomic parameters were refined for all atoms; non- H atoms were refined with anisotropic displacement parameters and H atoms isotropically. $R=0.041, \quad \omega R=0.044, \quad \Delta / \sigma=0.03$, $0.37>\Delta \rho>-0.29 \mathrm{e}^{\AA^{-3}}$. Scattering factors were from International Tables for X-ray Crystallography (1974, Vol. IV). Final non-H atomic parameters with e.s.d.'s are listed in Table 2.*

Geometrical parameters were computed with the CSU program (Vicković, 1988). All calculations, including the structure analysis, were performed on a PC-AT computer.

Discussion. Selected interatomic distances and angles are listed in Table 3. The compound is isostructural with $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Hair \& Beattie, 1977) and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Lazar et al., 1991). The volume of the unit cell is approximately 2% smaller than that of the Cr analog and 3% smaller than that of the Fe analog, reflecting the smaller ion radius of the Al atom.
The structure contains two crystallographically distinct $\mathrm{Al}_{\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}}$ octahedra each possessing almost regular octahedral geometry. Fig. 1 shows the asym-

[^0]Table 2. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\times 10^{4} \AA^{2}\right)$ for the non -H

	atoms			
	$U_{\mathrm{cq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
All	0	0	0	170 (4)
Al2	$\frac{1}{2}$	0	$\frac{1}{2}$	192 (4)
N1	7150 (2)	-7130 (2)	2800 (2)	259 (4)
N2	7984 (2)	-3114 (2)	2076 (2)	238 (4)
N3	3064 (2)	- 5094 (2)	3729 (2)	26 (4)
$\mathrm{Ol1}$	7425 (1)	-6597 (2)	1855 (2)	382 (6)
Ol 2	6278 (1)	-7381 (2)	2862 (2)	425 (6)
Ol 3	7754 (1)	-7424 (2)	3696 (2)	328 (4)
O21	7449 (1)	-3136 (2)	1059 (2)	299 (4)
O22	8860 (1)	-2858 (2)	2059 (2)	344 (5)
O23	7627 (1)	-3346 (2)	3048 (2)	352 (5)
O31	2317 (1)	-4961 (2)	3003 (2)	362 (4)
O32	3023 (2)	-4863 (3)	4835 (2)	484 (6)
O33	3846 (1)	- 5474 (2)	3354 (2)	381 (4)
Ow 1	335 (2)	-1215 (2)	3697 (2)	290 (4)
Ow 2	5489 (2)	-3857 (3)	3693 (2)	322 (4)
Ow 3	8564 (2)	-254 (3)	4506 (2)	363 (6)
Owll	-930 (1)	- 1423 (2)	-48 (2)	225 (4)
$\mathrm{O} w 12$	-715 (1)	1045 (2)	1054 (2)	240 (4)
$\mathrm{O} \because 13$	630 (1)	-851 (2)	1370 (2)	241 (4)
$\mathrm{O} w 21$	5669 (2)	-1103 (3)	3922 (2)	283 (4)
Oル22	4031 (1)	-1369 (2)	4994 (2)	291 (4)
Or23	4309 (1)	911 (2)	3689 (2)	268 (5)

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Octahedron 1			
All-Owll	1.878 (2)	OH 11 - $\mathrm{All}^{\text {- }} \mathrm{OH} \cdot 12$	$90 \cdot 2$ (1)
All-Ow 12	1.880 (2)	$\mathrm{Ow} \cdot 11$ - All -Ow O 13	89.6 (1)
All-Owl3	1.870 (2)	$\mathrm{Ow} \cdot 12-\mathrm{All}-\mathrm{Ow} 13$	$89 \cdot 8$ (1)
Octahedron 2			
Al2-Ow ${ }^{1}$	1.892 (3)	$\mathrm{O} w 21-\mathrm{Al2-O} \mathrm{~W}^{2} 22$	90.0 (1)
$\mathrm{Al2-O}+22$	1.881 (2)	$\mathrm{Ow} 21-\mathrm{Al2}-\mathrm{Ow} 23$	91.9 (1)
Al2-Ow 23	1.862 (2)	$\mathrm{O} \because 22-\mathrm{Al2-O} 4: 23$	90.5 (1)
Nitrate 1			
$\mathrm{Nl}-\mathrm{Oll}$	$1 \cdot 242$ (3)	$\mathrm{Ol1-N1-O12}$	$120 \cdot 3$ (2)
$\mathrm{N} 1-\mathrm{O} 12$	1.244 (3)	$\mathrm{O} 11-\mathrm{Nl}-\mathrm{O} 13$	120.1 (2)
N -O13	$1 \cdot 258$ (3)	$\mathrm{Ol} 2-\mathrm{Nl}-\mathrm{Ol} 3$	119.6 (2)
Nitrate 2			
N2-O21	$1 \cdot 275$ (3)	$\mathrm{O} 21-\mathrm{N} 2-\mathrm{O} 22$	118.7 (2)
$\mathrm{N} 2-\mathrm{O} 22$	1.243 (3)	$\mathrm{O} 21-\mathrm{N} 2-\mathrm{O} 23$	119.7 (2)
N2-O23	1.233 (3)	$\mathrm{O} 22-\mathrm{N} 2-\mathrm{O} 23$	$121 \cdot 6$ (2)
Nitrate 3			
N3-O31	$1 \cdot 250$ (3)	$\mathrm{O} 31-\mathrm{N} 3-\mathrm{O} 32$	119.2 (2)
N3-O32	1.233 (3)	$\mathrm{O} 31-\mathrm{N} 3-\mathrm{O} 33$	121-1 (2)
N3-O33	$1 \cdot 251$ (3)	$\mathrm{O} 32-\mathrm{N} 3-\mathrm{O} 33$	119.7 (2)

metric unit and illustrates the overall similarities of the two independent octahedra. In fact, the asymmetric unit comprises two crystallographically independent half octahedra. The complete octahedra are generated by the $\overline{1}$ symmetry located at the central Al atoms. The independent $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ ions are linked by hydrogen bonds to three nitrate groups and three water molecules. The hydrogen bonds involving interstitial water molecules are longer than those which involve coordinated water molecules (see Table 4). In the planar nitrate ions, each O atom acts as an acceptor for at least one hydrogen bond. Three O atoms ($\mathrm{O} 21, \mathrm{O} 31$ and O 33) act as acceptor for one short hydrogen bond to a coordinated water mol-

Table 4. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ pertinent to the H -bonded interactions $D-\mathrm{H} \cdots A$

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
Or 1 - $\mathrm{H} 11 \cdots \mathrm{On} 3^{\text {i }}$	0.68	2.08	2.756	172
$\mathrm{Ow} \cdot \mathrm{l}-\mathrm{H} 12 \cdots \mathrm{Ow} 3^{\text {ii }}$	0.79	2.07	2.846	172
$\mathrm{O} w 2-\mathrm{H} 21 \cdots \mathrm{O} 33^{\mathrm{iii}}$	0.74	2.06	2.756	158
$\mathrm{Ow} 2-\mathrm{H} 22 \cdots \mathrm{O} 32^{*}$	0.72	2.07	2.780	176
$\mathrm{On} 3-\mathrm{H} 31 \cdots \mathrm{O} 21^{*}$	0.73	$2 \cdot 14$	2.857	169
$\mathrm{Ow} 3-\mathrm{H} 32 \cdots \mathrm{O} 31{ }^{\text {vi }}$	0.77	$2 \cdot 22$	2.902	148
$\mathrm{Ow} 11-\mathrm{H} 41 \cdots \mathrm{O} 22^{i \prime}$	0.88	1.85	2.719	174
$\mathrm{Ow} 11-\mathrm{H} 42 \cdots \mathrm{O} 23^{\text {vii }}$	0.80	1.96	2.753	173
$\mathrm{Or} 12-\mathrm{H} 51 \cdots \mathrm{Or}{ }^{\text {riii }}$	0.81	1.89	2.693	174
$\mathrm{On} 12-\mathrm{H} 52 \cdots \mathrm{O} 31{ }^{\text {viii }}$	0.84	1.89	$2 \cdot 717$	170
$\mathrm{On} 13-\mathrm{H} 61 \cdots \mathrm{Ol}{ }^{\text {nin }}$	0.76	1.92	2.667	167
$\mathrm{Or} \cdot 13-\mathrm{H} 62 \cdots \mathrm{Or} \mathrm{l}^{\text {iii }}$	0.85	1.84	2.648	159
$\mathrm{On} 121-\mathrm{H} 71 \cdots \mathrm{O} \because 22^{\text {iii }}$	0.81	1.86	2.667	172
	0.84	1.89	2.702	164
$\mathrm{OH} 22-\mathrm{H} 81 \cdots \mathrm{Oll}{ }^{\text {vi }}$	0.79	1.94	2.725	171
On:22-H82 \cdots O12 ${ }^{\text {iv }}$	0.84	1.87	2.700	170
$\mathrm{Ow} 23-\mathrm{H} 91 \cdots \mathrm{O} \mathrm{w2}^{4 \mathrm{i}}$	0.77	1.88	2.648	174
$\mathrm{Ow} 23-\mathrm{H} 92 \cdots \mathrm{O} 2{ }^{\text {vi }}$	$0 \cdot 83$	1.88	$2 \cdot 647$	172

Average e.s.d.'s in the tabulated values: $D-\mathrm{H}: 0.04 ; \mathrm{H} \cdots A: 0.04$; $D \cdots A: 0.003 \AA ; D-\mathrm{H} \cdots A: 4^{\circ}$. Mean O-H: 0.791 (52) \AA.
Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-1+x, y, z$; (iii) x, y, z;
(iv) $1-x,-1-y, 1-z$; (v) $x,-\frac{1}{2}-y, \frac{1}{2}+z$; (vi) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$;
(vii) $-1+x,-\frac{1}{2}-y, \frac{1}{2}+z$; (viii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Fig. 1. Perspective view of the asymmetric unit and the atomic numbering scheme.
ecule and also for one longer bond to a lattice water molecule (Table 4). Within nitrate 2 the $\mathrm{N} 2-\mathrm{O} 21$ bond is significantly lengthened.

References

Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide. Version of 6 January 1983. EnrafNonius, Delft, The Netherlands.
Groth, P. (1906). Chemische Kristallographie, Vol. II, p. 133. Leipzig: Englemann.
Hair, N. J. \& Beattie, J. K. (1977). Inorg. Chem. 16, 245-250.
Herpin, P. \& Sudarsanan, K. (1965). Bull. Soc. Fr. Minéral. Cristallogr. 88, 595-601.

Kannan, K. K. \& Viswamitra, M. A. (1965). Acta Cryst. 19, 151-152.
Lazar, D., Ribár, B., Divjaković \& Mészáros, Cs. (1991). Acta Cryst. C47, 1060-1062.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England. Vicković, I. (1988). CSU. Faculty of Sciences, Univ. of Zagreb, Yugoslavia.

Acta Cryst. (1991). C47, 2285-2287

Structure of Low- $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{\mathbf{1 3}}$

By B. M. Gatehouse* and S. N. Platts
Chemistry Department, Monash University, Clayton, Victoria, 3168, Australia
and R. S. Roth
National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, Maryland 20899, USA

(Received 18 February 1991; accepted 30 May 1991)

Abstract

Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}, M_{r}=743 \cdot 88\), triclinic, $P \overline{1}, a=$ 5.691 (5), $\quad b=7.238$ (7), $\quad c=8.006$ (5) $\AA, \quad \alpha=$ 83.65 (5), $\beta=75.95$ (8), $\gamma=70.49$ (7) ${ }^{\circ}, V=301.4 \AA^{3}$, $Z=1, D_{x}=4 \cdot 10 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.7107 \AA, \mu$ $=10 \cdot 29 \mathrm{~mm}^{-1}, F(000)=332, T=293 \mathrm{~K}$, final $R=$ 0.039 for 1222 counter-measured reflections. The structure comprises Ba^{2+} ions and non-centrosymmetric $\left[\mathrm{P}_{4} \mathrm{O}_{13}\right]^{6-}$ polyanions consisting of four corner-shared phosphorus-oxygen tetrahedra with a $\mathrm{P}-\mathrm{P}-\mathrm{P}-\mathrm{P}$ torsion angle of 180°. The mean $\mathrm{P}-\mathrm{O}$ and $\mathrm{Ba}-\mathrm{O}$ distances are 1.53 and $2.77 \AA$ respectively.

Introduction. The structures of a number of compounds in the $\mathrm{BaO}-\mathrm{P}_{2} \mathrm{O}_{5}$ system have been reported; however, only the unit-cell dimensions of the lowand high-temperature forms of $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$ were first given by Millet, Parker \& Roth (1986). The structure of the low-temperature form (low-) of $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$ is reported here.

Experimental. A colourless crystal fragment with approximate faces $\overline{1} \overline{1} \overline{1}, 111,0 \overline{1} 0,010,10 \overline{2}$, and $1 \overline{1} 3$ and dimensions $0.035 \times 0.035 \times 0.065 \mathrm{~mm}$, was selected from a preparation described elsewhere (Millet, Parker \& Roth, 1986) and mounted on a silica capillary using 'Tyton 5 Minit' adhesive. Crystal data obtained using a Philips PW 1100 computercontrolled four-circle diffractometer equipped with a graphite monochromator. Cell parameters obtained as the means of 10 measurements made on the positions of 24 reflections $13<2 \theta<38^{\circ}$ as orientation checks during data collection. Data collected

[^1]out to 2θ (Mo $K \alpha$) $=60^{\circ}$ using the ω-scan technique with a symmetric scan range of $\pm(0 \cdot 65+0.3 \tan \theta)^{c}$ in ω from the calculated Bragg angle, at a scan rate of $0.04^{5} \mathrm{~s}^{-1}$. No reflection was sufficiently intense to require the insertion of an attenuation filter. 1751 unique reflections measured to $2 \theta=60^{\circ}, 1222$ unique reflections $[I>3 \sigma(I)]$ used in analysis, $R_{\text {int }}=0.042$; index range $h-11 / 11, k-10 / 7,10 / 10$. Three standard reflections measured at 3 h intervals; no decomposition occurred. Data processed using the program written specifically for the Philips PW 1100 diffractometer (Hornstra \& Stubbe, 1972). Absorption correction applied, max. and min. transmission factors 0.7727 and 0.6861 , respectively. No extinction correction necessary. The Ba atom located by inspection on the origin, remaining atoms located in subsequent difference Fourier syntheses. Function minimized in full-matrix least-squares refinement on $F, \sum w\left(\left|F_{o}-\right| F_{c}\right)^{2}$, where w is the weight $\left[\sigma^{2}\left(F_{o}\right)\right]^{-1}$. During refinement $O(7)$, on a centre of symmetry showed peaks in the difference synthesis consistent with disorder in such a way that the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle about it departed from 180°. In addition $\mathrm{O}(5)$ and $\mathrm{O}(6)$ showed signs of disorder in the difference synthesis consistent with the $\mathrm{O}(7)$ disorder, indicating a small rotational disorder of the $P(1)$ tetrahedron about the $\mathrm{O}(3)-\mathrm{P}(1)$ bond. Each of the $\mathrm{O}(5)$ and $\mathrm{O}(6)$ atoms has been refined as two atoms with 50% occupancies and $\mathrm{O}(7)$ has been moved off the centre of symmetry. Ba and P atoms refined anisotropically, other atoms refined isotropically; 60 variable parameters, final $R=0.039$ and $w R=0.042$ (for observed reflections); max. Δ / σ in final cycle 0.005 . Final difference synthesis had $\Delta \rho$ within $1 \cdot 3$ and $-1.3 \mathrm{e} \AA^{-3}$, in vicinity of $\mathrm{P}(1)$ and $\mathrm{O}\left(6^{\prime}\right)$. Scattering

[^2]
[^0]: * Lists of structure factors, anisotropic displacement parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54270 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

[^2]: © 1991 International Union of Crystallography

